Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 640: 122975, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116602

RESUMO

In recent years, significant progress has been made in the studies of the spring-driven autoinjector, leading to an improved understanding of this device and its interactions with tissue and therapeutic proteins. The development of simulation tools that have been validated against experiments has also enhanced the prediction of the performance of spring-driven autoinjectors. This paper aims to address critical hydrodynamic considerations that impact the design of spring-driven autoinjectors, with a specific emphasis on sloshing and cavitation. Additionally, we present a framework that integrates simulation tools to predict the performance of spring-driven autoinjectors and optimize their design. This work is valuable to the pharmaceutic industry, as it provides crucial insights into the development of spring-driven autoinjectors and therapeutic proteins. This work can also enhance the efficacy and safety of the delivery of therapeutic proteins, ultimately improving patient outcomes.


Assuntos
Hidrodinâmica , Humanos , Simulação por Computador , Desenho de Equipamento
2.
Int J Pharm ; 628: 122296, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280217

RESUMO

Accurate injection time prediction is essential in developing spring-driven autoinjector devices since the drug delivery is expected to finish within seconds to bring convenience, reduce the risk for early lift-off, and provide a consistent experience to users. The Carreau model captures the liquid's shear-dependent viscosity measured in our experiments. Thus, a quasi-steady model, which uses the Carreau model to describe the liquid's viscosity, is developed to predict the injection time of spring-driven autoinjectors. Analytical relations between the flow rate and the pressure drop in the needle are also obtained. The Carreau number in the spring-driven autoinjector is greater than one and smaller than a critical value; in this region, using the power-law model to describe the liquid viscosity accurately predicts the injection time, which agrees with the current literature findings. Additionally, a force threshold is identified for the friction force between the plunger and the syringe barrel, beyond which the injection time is infinite. Appreciation of this force threshold can help avoid device stalling and reduce the risk of underdosing. Moreover, the role of liquid's shear-thinning index on the injection time of spring-driven autoinjectors is quantified. Understanding the shear-thinning index allows formulators to experiment with excipients and pH to enhance confidence in drug/device combination product design and integration. Our experimental and theoretical results can help drug product and device developers with integrated product design and improve the patient experience.


Assuntos
Agulhas , Seringas , Humanos , Reologia , Injeções , Viscosidade
3.
Int J Pharm ; 627: 122210, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122618

RESUMO

Understanding the interface motion and hydrodynamic shear induced by the liquid sloshing during the insertion stage of an autoinjector can help improve drug product administration. We perform experiments to investigate the interfacial motion and hydrodynamic shear due to the acceleration and deceleration of syringes. The goal is to explore the role of fluid properties, air gap size, and syringe acceleration on the interface dynamics caused by autoinjector activation. We used a simplified autoinjector platform to record the syringe and liquid motion without any view obstruction. Water and silicone oil with the same viscosity are used as the model fluids. Particle Image Velocimetry (PIV) is employed to measure the velocity field. Simultaneous shadowgraph visualization captures the air entrainment. Our in-house PIV and image processing algorithms are used to quantify the hydrodynamic stress and interfacial area to investigate the effects of various autoinjector design parameters and fluid types on liquid sloshing. The results indicate that reducing the air gap volume and syringe acceleration/deceleration mitigate the interface area and effective shear. Moreover, the interfacial area and induced hydrodynamic stress decrease with the Fr=U/aD, where U is the interface velocity, a is the maximum syringe acceleration, and D is the syringe diameter.


Assuntos
Hidrodinâmica , Seringas , Óleos de Silicone/química , Reologia , Água
4.
Pharm Res ; 39(9): 2247-2261, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35854079

RESUMO

PURPOSE: Cavitation is an undesired phenomenon that may occur in certain types of autoinjectors (AIs). Cavitation happens because of rapid changes of pressure in a liquid, leading to the formation of small vapor-filled cavities, which upon collapsing, can generate an intense shock wave that may damage the device container and the protein drug molecules. Cavitation occurs in the AI because of the syringe-drug relative displacement as a result of the syringe's sudden acceleration during needle insertion and the ensuing pressure drop at the bottom of the container. Therefore, it's crucial to analyze the potential effect of cavitation on AI. The goal of the current study is to investigate the effects of syringe and AI design parameters such as air gap size, syringe filling volume, fluid viscosity, and drive spring force (syringe acceleration) on the risk and severity of cavitation. METHODS: A model autoinjector platform is built to record the syringe and cavitation dynamics which we use to estimate the cavitation intensity in terms of extension rate and to study the effects of design parameters on the severity of cavitation. RESULTS: Our results show the generation of an intense shock wave and a high extension rate upon cavitation collapse. The induced extension rate increases with syringe acceleration and filling volume and decreases with viscosity and air gap size. CONCLUSION: The most severe cavitation occurred in an AI device with the larger drive spring force and the syringe of a smaller air gap size filled with a less viscous fluid and a larger filling volume.


Assuntos
Agulhas , Seringas , Gases , Viscosidade
5.
Int J Pharm ; 608: 121062, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34506926

RESUMO

The collapse of cavitation bubbles induced by abrupt acceleration of the syringe in an autoinjector device can lead to protein aggregation. The details of bubble dynamics are investigated using an axisymmetric, three-dimensional simulation with passive tracers to illustrate the transport of protein molecules. When a bubble near the syringe wall collapses, protein molecules are concentrated in the re-entrant jet, pushed towards the syringe wall, and then spread across the wall, potentially leading to protein adsorption on the syringe wall and aggregation. This phenomenon is more prominent for bubbles positioned closer to the bottom wall, growing to a larger maximum radius. The bubble's maximum radius decreases with the bubble's distance from the syringe wall and air gap pressure, and increases with an increase in liquid column height and nucleus size. The strain rate induced by the bubble collapse is not large enough to unfold the proteins. When the re-entrant jet impacts the bubble surface or syringe wall, the bubble breaks up, generating smaller bubbles with high surface concentration of protein molecules, potentially inducing aggregation in the bulk. The bubble dynamics are influenced by dimensionless distance of the nucleus from the wall, normalized by maximum bubble radius (γ). The re-entrant jet velocity increases with γ, while the maximum liquid pressure, typically 100∼1000 bar, first decreases and then increases with γ. For a cloud of cavitation bubbles, i.e., closely clustered bubbles, coalescence of bubbles can occur, leading to a higher peak pressure at collapse.


Assuntos
Preparações Farmacêuticas , Simulação por Computador , Pressão
6.
Pharm Res ; 38(2): 257-275, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33619639

RESUMO

PURPOSE: Interface motion and hydrodynamic shear of the liquid slosh during the insertion of syringes upon autoinjector activation may damage the protein drug molecules. Experimentally validated computational fluid dynamics simulations are used in this study to investigate the interfacial motion and hydrodynamic shear due to acceleration and deceleration of syringes. The goal is to explore the role of fluid viscosity, air gap size, syringe acceleration, syringe tilt angle, liquid-wall contact angle, surface tension and fill volume on the interface dynamics caused by autoinjector activation. METHODS: A simplified autoinjector platform submerged in water is built to record the syringe and liquid motion without obstruction of view. The syringe kinematics is imported to the simulations based on OpenFOAM InterIsoFoam solver, which is used to study the effects of various physical parameters. RESULTS: The simulations agree with experiments on the air-liquid interface profile and interface area. The interfacial area and the volume of fluid subject to high strain rate decrease with the solution viscosity, increase with the air gap height, syringe velocity, tilt angle and syringe wall hydrophobicity, and hardly change with the surface tension and liquid column height. The hydrodynamic shear mainly occurs near the syringe wall and entrained bubbles. CONCLUSION: For a given dose of drug solution, the syringe with smaller radius and larger length will generate less liquid slosh. Reducing the air volume and syringe wall hydrophobicity are also helpful to reduce interface area and effective shear. The interface motion is reduced when the syringe axis is aligned with the gravitational direction.


Assuntos
Desenho de Equipamento , Modelos Químicos , Soluções/química , Seringas , Química Farmacêutica , Simulação por Computador , Hidrodinâmica , Injeções Subcutâneas/instrumentação , Soluções/administração & dosagem , Tensão Superficial , Viscosidade
7.
Int J Pharm ; 594: 120008, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189808

RESUMO

This study focuses on developing a predictive dynamic model for spring-driven autoinjectors. The values of unknown physical parameters, such as the heat convection coefficient and the friction force between the plunger and the syringe barrel, are obtained by fitting the experimentally measured displacements of the plunger and the syringe barrel. The predicted kinematics of the components, such as the displacement and velocity of the syringe barrel, agree well with the experiments with a l2-norm error smaller than 10%. The predictions of the needle displacement at the start of drug delivery agree with the experimental measurements with a l2-norm error of 20%. The maximum air gap pressure and temperature decrease with the initial air gap height but increase with the elasticity and viscosity of the plunger and the mechanical stop. The proposed experimentally validated dynamic model can be effectively used for device design optimization as it is not computationally demanding.


Assuntos
Agulhas , Seringas , Sistemas de Liberação de Medicamentos , Elasticidade , Viscosidade
8.
Curr Med Res Opin ; 36(8): 1343-1354, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544355

RESUMO

Objective: Autoinjectors are a convenient and efficient way to self-administer subcutaneous injections of biopharmaceuticals. Differences in device mechanical design can affect the autoinjector functionality and performance. This study investigates the performance differences of two single-spring-actuated autoinjectors.Methods: We compare the performance between Emgality (120 mg/mL) and Aimovig (140 mg/mL) autoinjector devices from an engineering point of view at two test conditions: room (25 C[Formula: see text]) and storage (5 C[Formula: see text]) temperatures. We employ a novel experimental procedure to simultaneously acquire the force and acoustic signals during operation, and high-speed imaging during the needle insertion and drug injection.Results: We perform 18 quantitative comparisons between Emgality and Aimovig, and we observe that 14 of these have statistically significant differences. For both test conditions, Emgality requires an 8 N activation force while Aimovig requires 14 N activation force, and the needle of Emgality has an insertion depth of 5 mm while Aimovig has an insertion depth of 7 mm. The injection speeds are significantly affected by temperature. Emgality has an injection speed of 0.40 mL/s and 0.28 mL/s at room and storage temperature condition, respectively; while Aimovig has an injection speed of 0.24 mL/s and 0.16 mL/s at those conditions. Lastly, confirmation "click" sound of Emgality occurs 0.75-1.53 s after dose completion, while in Aimovig, the confirmation "click" sound occurs 0.26-0.46 s before dose completion.Conclusions: This study revealed performance differences between Emgality and Aimovig autoinjector devices, despite the fact that the delivery principle of these single-spring-actuated autoinjectors are the same. These differences may result in different risk of intramuscular injection and premature device removal, both of which need to be further verified in clinical trials.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/administração & dosagem , Injeções Subcutâneas/instrumentação , Humanos , Autoadministração
9.
Drug Deliv Transl Res ; 8(5): 1238-1253, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084014

RESUMO

Spring-actuated autoinjectors delivering viscous drug solutions resulting from large drug concentrations require large spring forces which can create high peak pressures and stresses within syringes. The high peak pressures and stresses can lead to device failure. Measurements with a suite of novel instrumentation and analysis using numerical simulation explain the peak pressures and peak stresses as originating from mechanical impacts between moving components, the large acceleration of the components, and surprisingly, the production of tension waves in the liquid resulting in cavitation. The presence and intensity of cavitation depend on relative timing between the pressurization and the acceleration of the syringe, which, in turn, depend on the size and location of an air gap inside the syringe. We show that production of localized but very high pressures can result from shock wave focusing in the conical section of the syringe.


Assuntos
Injeções/instrumentação , Desenho de Equipamento , Modelos Teóricos , Pressão , Estresse Mecânico , Seringas , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...